W upbAaciTy

Data

Engineering 7'
Nanodegree

Objectives

This is a collection of projects that were part of the Udacity Data
Engineering Nanodegree program. These projects are completed in
relation to a mock start-up called 'Sparkify'.

Sparkify is a music streaming application that wants to start
analyzing their songs, song plays and user data. So using modern
data engineering tools | built 4 projects to assist Sparkify in
accomplishing it's goals.

Projects

01.

Data

Modeling

Data Modeling with
PostgreSQL & Cassandra

Data

Warehouse

Data Warehousing with
Amazon Redshift

Data

Lakes

Data Lakes with AWS &
Apache Spark

Data
Pipelines

Data Pipelines with
Apache Airflow

&>

R

Song Dataset

The first dataset is a subset of real data from the Million Song Dataset. Each file is in JSON format and
contains metadata about a song and the artist of that song. The files are partitioned by the first three
letters of each song's track ID. For example, here are filepaths to two files in this dataset.

song_data/A/B/C/TRABCEI128F424(983.json

D a t a S e t s song_data/A/A/B/TRAABIL12983CDCF1A. json

w And below is an example of what a single song file, TRAABJL12903CDCF1A.json, looks like.

{"num_songs": 1, "artist_id": "ARJIE2Y1187B994AB7", "artist_latitude": null, "artist_longitude”: null, "ai

[« J ’

Log Dataset

The second dataset consists of log files in JSON format generated by this event simulator based on the

songs in the dataset above. These simulate app activity logs from an imaginary music streaming app Fact Table
based on configuration settings. 1. songplays - records in log data associated with song plays i.e. records with page | NextSong |
The log files in the dataset you'll be working with are partitioned by year and month. For example, here * songplay_id, start_time, user_id, level, song_id, artist_id, session_id, location, user_agent

are filepaths to two files in this dataset.

Dimension Tables

log_data/2018/11/2018-11-12-events. json =
log_data/2018/11/2018-11-13-events.json 2. users - users in the app

® user_id, first_name, last_name, gender, level

And below is an example of what the data in a log file, 2018-11-12-events.json, looks like.
3. songs - songs in music database

e * song_id, title, artist_id, year, duration

s rroq (orciomm N1
T o

eosisame ey 4. artists - artists in music database

o 55
e

* artist_id, name, location, lattitude, longitude

s W a7

. s i oo W o o o 5. time - timestamps of records in songplays broken down into specific units
* start_time, hour, day, week, month, year, weekday

-

user_id

first_name
last_name
gender
level

songplay_id

start_time
user_id
level
duration
song_id
artist_id

location

user_agent

v

Entity Relationship Diagram

start_time

hour
day
week
month
year

weekday

artst_id
name
location
latitude
longitude

Q

PostgreSQL PrOjECt H1:

Data Modeling with

PostgreSQL & Cassandra
cassandra

A

Data Modeling with PostgreSQL

A startup called ‘Sparkify' wants to analyze the data they've been collecting on songs and user
activity on their new music streaming app. The analytics team is particularly interested in
understanding what songs users are listening to. Currently, they don't have an easy way to query
their data, which resides in a directory of JSON logs on user activity on the app, as well as a
directory with JSON metadata on the songs in their app.

The task at hand was to create a PostgreSQL database utilizing a star schema with fact and
dimension tables designed to optimize queries and create a simple ETL pipeline that transfers
data from files in two local directories into these tables for song play analysis and then test our
database utilizing SQL queries provided by the analytics teams, to see if we can return the
expected results.

e
Data Modeling with PostgreSQL

PostgreSQL

df = pd.read_json(filepath,lines=True)
df.head()

artist auth gender | if i length level | location method registration |sessionid|song

Tampa-St

Petersburg- = 1 Ain't No

Sydney Logged 238.07955 | paid NextSong | 1.540558e+12
Sunshine

Youngblood | In Clearwater,
FL

Lake
Havasu My

:‘n"gged Grifin | 151.92771|paid | City- NextSong | 1.541057e+12 ?g:'cez

g‘gma" (Explicit)

Gang Starr

My First
Kiss
(Feat
Kesha)
[Album
Version]

Lake

n our data ¢ folder and using our sql_ Havasu
: :‘n°gge° Grifin | 192.52200 city- NextSong | 1.541057e+12

Kingman,

Az

the

Tampa-St
Petersburg-
Clearwater,
FL

The Girl
NextSong | 1.540558e+12 and The
Robot

RADAqyksopp

L d
I:gge 369.81506 | paid

Lake

. . Havasu
* G 0 t 0 proje Ct G It h u b Kajagoogoo Griffin | 223.55546 | paid i::‘gman NextSong | 1.541057e+12 Too Shy
Az

https://github.com/Manny-Brar/DataEngineeringNanodegree-P1-DataModelingPostgresql

Data Modeling with Cassandra

A startup called ‘Sparkify’ wants to analyze the data they've been collecting on songs and
user activity on their new music streaming app. The analytics team is particularly
interested in understanding what songs users are listening to. Currently, they don't have
an easy way to query their data, which resides in a directory of JSON logs on user activity
on the app, as well as a directory with JSON metadata on the songs in their app.

In this project, | was tasked with creating a NoSQL database using Apache Cassandra and
complete an ETL pipeline with Python. Again, we will be able to test our database model
using provided SQL queries to make sure we return the expected results.

I [33]:

In [34]:

In [35]):

Data Modeling with Cassandra

Data Modeling with Apache Cassandra

Udacity Data Engineering Nanodegree | Project 2 | Data Modeling with Cassandra | Manny Brar

Import Python packages

Import Python packages

inport pandas as pd

import cassandra

import

re

os

glob

numpy as ap In [40]: # CREATE TABLES

json queryl1="CREATE TABLE IF NOT EXISTS songplay "
import csv

queryl + "(sessionId int, itemInSession int, artist_name text, song text, length decimal, PRIMARY KEY (sessionId, itemInSessio

Creating list of filepaths to process original event csv data files
session.execute(queryl)
except Exception as e:
print(e)
) o o " AAAA lere we create a new table if it does not currently exist and we assign it as songplay_.
:S:;);:“f ;;”;::;ug'z‘)"f’ el onaie we then specify our columns and data types for each column as well as setting our
: - PRIMARY KEY and Partition key ~~2"""

checking your current working directory
print(os.getcwd())

% Cruste-a fon booe o creste:a List Of Files.and collect -each Fitepath
i t, dirs, files i .walk(filepath): . . s .
Geibostoielcss faler cn delk (L ispets) file - event_datafile_new.csv
join the file path and roots with the subdirectories using glob
‘File_path_115t - glob. glob(0s. path. Join(root, =) with open(file, encoding = ‘utf8') as f:
sorint(file_path List) csvreader = csv.reader(f)
/home/workspace next(csvreader) # skip header
for line in csvreaden:
queryl = "INSERT INTO songplay_ (sessionId, itemInSession, artist_name, song, length)"
Processing the files to create the data file csv that will be used for Apache Casssandra tables - 5
o Aps queryl = queryl + “VALUES (X¥s, %s, %s, %s, %s)
tnitiating an espty List of rows that will be generated from each file session.execute(queryl, (int(1line[8]), int(line[3]), line[e], line[9], float(line[5])))
full_data_rows_list = []
" anan Next we read in the CSV file and Insert the data into the songplay_ table we created ~*A"""
for every Filepath in the file path List
for £ in file_path_list:

In [42]: queryl="SELECT artist_name, length, song FROM songplay_ WHERE sessionId = 338 AND itemInSession
reading csv file e
with open(f, » encoding - 'utf8’, newline- rous=session. execute(queryl)
creating a csv reader object o e !
csvreader = csv.reader(csvfile) pt Exception as e:
next(csvreader) print(e)

extracting each data row ane by one and append it
for line in csvreader: print('Artist Name','|
print(Line) 2 ’
z.lx:;'n;_:ws_ust,appemune) for row in rows: < o
print(row.artist_name,’|', row.length,’|’, row.song)

, ‘Length’, ‘|', ‘Song Title')

creating a smaller event data csv file called event_datafile full csv that will be used to insert data into the \ un annn Hepe we execute our SELECT statement to answer question 1 and we print the results below ~aa""
Apache Cassandra tables

csv.register_dialect('myDialect’, quoting-csv.QUOTE_ALL, skipinitialspace-True) Artist Name | Length | Song Title
. . i . Faithless | 495.3073 | Music Matters (Mark Knight Dub)
with open(’event_datafile_new.csv', 'w', encoding - 'utf3’, newline-'') as f:
uriter = csv.uriten(f, dialect-'mydialect')
writer.uriterow([artist’, ‘firstName', gender’,"itenlnsession’, ‘lastiane’, length’,\
‘level','location’, 'sessionId’, song’, user1d'])

o it S *Go to project Github

continue
writer.writerow((row(@], row[2], row[3], row[4], row[s], row[6], row[7], row(8], row[12], row(13], row[16]))

https://github.com/Manny-Brar/DataEngineeringNanodegree-P2-DataModelingCassandra

Project #2:

amazon Data Warehous.ing with
e Amazon Redshift

A

e e e

Data Warehouse with Amazon Redshift

A music streaming startup ‘Sparkify’, has grown their user base and song database and want to
move their processes and data onto the cloud. Their data resides in S3, in a directory of JSON
logs on user activity on the app, as well as a directory with JSON metadata on the songs in their
app.

As the data engineer | built an ETL pipeline on AWS that extracts their data from S3, stages
them into a Redshift database, and transforms data into a set of dimensional tables for their
analytics team to continue finding insights in what songs their users are listening to. To test
the database and ETL pipeline | run SQL queries provided by the analytics team from Sparkify and
compare your results with their expected results.

Data Warehouse with Amazon Redshift

amazon
REDSHIFT

dWS$s

conn.cl

print(*ETL

*Go to project Github

https://github.com/Manny-Brar/DataEngineeringNanodegree-P3-CloudDataWarehouse-AWS

Project #3:

Data Lakes with AWS &
Spark

e e e

Data Lakes with AWS & Apache Spark

A music streaming startup, Sparkify, has grown their user base and song database even more
and want to move their data warehouse to a data lake. Their data resides in S3, in a directory of

JSON logs on user activity on the app, as well as a directory with JSON metadata on the songs
in their app.

As the data engineer, | built an ETL pipeline for a data lake hosted on S3, that extracts the data
from S3, processes it using Apache Spark, and loads the data back into S3 as a set of
dimensional tables. This will allow the analytics team to continue finding insights in what songs
their users are listening to.

Next I'll be able to test the database and ETL pipeline by running queries given by the analytics
team from Sparkify and compare the results with their expected results.

K

Data Lakes with AWS & Apache Sp

ark arks

.builder \

et(f

{output_data}

che . hadoop: hadoop

users
user_id
first_name
last_name
gender
level

songs
song_id
title
artist_id
year
duration

it ——
varchar
varchar
varchar

varchar

varchar —'
varchar
varchar
numeric

numeric

songplay id
start_time
— user_id
level
—— song_id
artist_id
session_id
location

user_agent

ark

int
timestamp
int
varchar
varchar
varchar
int
varchar

varchar

APACHE

time

start_time

hour
day
week
month
year
weekday

artist_id
name
location
latitude
longitude

*(o to project Github

artists

timestamp
int

int

varchar
varchar
varchar
numeric

numeric

https://github.com/Manny-Brar/DataEngineeringNanodegree-P4-DataLakes-Spark-AWS

Project #4:

Data Pipelines with
Apache Airflow

A

e e e

Data Pipelines with Apache Airflow

A music streaming company, Sparkify, has decided that it is time to introduce more automation
and monitoring to their data warehouse ETL pipelines and concluded that the best tool to
achieve this is Apache Airflow.

In this project | create high grade data pipelines that are dynamic and built from reusable tasks,
can be monitored, and allow easy backfills. Sparkify have also noted that data quality plays a big
part when analyses are executed on top the data warehouse and want to run tests against their
datasets after the ETL steps have been executed to catch any discrepancies in the datasets.

The source data resides in S3 and needs to be processed in Sparkify's data warehouse in

Amazon Redshift. The source datasets consist of JSON logs of user activity in the application
and JSON metadata about the songs the users listen to.

K

e
Data Pipelines with Apache Airflow

airflow i
airflow.

airflow

-[Load_song_dlm_tabla]- N

"start_dat a : { 5 -
“end_date": dateti '| Load_user_dim_table } ;
"email_on_ret Load_songplays_fact_table] [Run_data_quality checks H End_execution]

'{ Load_artist_dim_table }

Redshift") '
ED_REdSIFLS> i Load_time_dim_table I X
default_args=default_args,

description="Load and transform data in Redshift with Airflow",

schedule_interval="@ * * * =",

*(3o to project Github

https://github.com/Manny-Brar/DataEngineeringNanodegree-P5-DataPipelines-Airflow-Spark-AWS

September 07, 2020

W ubaciTy

Manny Brar

Has successfully completed the

Data Engineering Nanodegree

NANODEGREE PROGRAM

